

CUBES

When we multiply a number three times by itself, we say that the number has been cubed, and the product is called the **cube** of that number or the number raised to the power of 3. For example,

$$\begin{aligned}\text{Cube of } 1 &= 1 \times 1 \times 1 \\ &= 1^3\end{aligned}$$

$$\text{Cube of } 2 = 2 \times 2 \times 2$$

$$= 2^3$$

$$\text{Cube of } 8 = 8 \times 8 \times 8$$

$$= 8^3$$

In general, the cube of a number $x = x \times x \times x = x^3$.
Look at the following table, which gives the cube of the first 15 natural numbers.

Number	Cube	Number	Cube	Number	Cube
1	1	6	216	11	1,331
2	8	7	343	12	1,728
3	27	8	512	13	2,197
4	64	9	729	14	2,744
5	125	10	1,000	15	3,375

From this table, it is clear that 1; 8; 27; 64; ... ; 3,375 are the cubes of some natural numbers. Such numbers are called **perfect cubes**. In other words, a natural number n is a perfect cube if there exists a natural number m , such that:

$$\begin{aligned}n &= m \times m \times m \\ &= m^3\end{aligned}$$

Thus a natural number which can be expressed as a product of triplets of equal factors is known as a perfect cube.

Properties of cubes of numbers

(a) Cubes of all odd numbers are odd.

$$1^3 = 1 \times 1 \times 1 = 1$$

$$3^3 = 3 \times 3 \times 3 = 27$$

$$5^3 = 5 \times 5 \times 5 = 125$$

$$7^3 = 7 \times 7 \times 7 = 343$$

All are odd natural numbers.

(b) Cubes of all even natural numbers are even.

$$2^3 = 2 \times 2 \times 2 = 8$$

$$4^3 = 4 \times 4 \times 4 = 64$$

$$10^3 = 10 \times 10 \times 10 = 1,000$$

All are even natural numbers.

(c) Cubes of negative integers are negative.

$$(-3)^3 = (-3) \times (-3) \times (-3) = -27$$

$$(-6)^3 = (-6) \times (-6) \times (-6) = -216$$

All are negative integers.

(d) The cube of a rational number is the cube of its numerator divided by the cube of its denominator—that is, cube of $\frac{p}{q} = \left(\frac{p}{q}\right)^3 = \frac{p^3}{q^3}$.

$$\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{2 \times 2 \times 2}{3 \times 3 \times 3} = \frac{8}{27}$$

$$\left(\frac{5}{7}\right)^3 = \frac{5^3}{7^3} = \frac{5 \times 5 \times 5}{7 \times 7 \times 7} = \frac{125}{343}$$

(e) The product of the cubes of two numbers is equal to the cube of their products—that is, for any two natural numbers a and b , the product of their cubes is $a^3 \times b^3 = (a \times b)^3$.

CUBE ROOTS

As we know, the square root is the opposite of a square. In the same way, the **cube root** is the opposite of a cube. For example,

Cube of 8 = $8^3 = 8 \times 8 \times 8 = 512$.

Cube root of 512 = 8.

Cube of 7 = $7^3 = 7 \times 7 \times 7 = 343$.

Cube root of 343 = 7.

In general, the cube of $x = x \times x \times x = x^3$ and the cube root of x^3 is x . For any number x , the cube root is denoted by $\sqrt[3]{x}$.

Thus $\sqrt[3]{343} = 7$

$\sqrt[3]{216} = 6$

If the number is a negative integer, then its cube root will also be a negative integer.

$$(-64)^3 = (-4)^3 = (-4) \times (-4) \times (-4)$$

$$\text{So } \sqrt[3]{(-64)} = (-4)$$

Cube Root by Successive Subtraction

Like squares of natural numbers, cubes too have some interesting patterns.

$$1^3 = 1$$

$$2^3 = 8 \Rightarrow 2^3 - 1^3 = 7 = 1 + 1 \times 6 \\ = 1 + 2 \times 1 \times 3$$

$$3^3 = 27 \Rightarrow 3^3 - 2^3 = 19 = 1 + 1 \times 6 + 2 \times 6 \\ = 1 + 3 \times 2 \times 3$$

$$4^3 = 64 \Rightarrow 4^3 - 3^3 = 37 = 1 + 1 \times 6 + 2 \times 6 \\ + 3 \times 6 \\ = 1 + 4 \times 3 \times 3$$

$$5^3 = 125 \Rightarrow 5^3 - 4^3 = 61 \\ = 1 + 1 \times 6 + 2 \times 6 + 3 \\ \times 6 + 4 \times 6 \\ = 1 + 5 \times 4 \times 3$$

$$\vdots \qquad \vdots \\ 9^3 = 729 \qquad 9^3 - 8^3 = 217 = 1 + 1 \times 6 + 2 \times 6 + \\ \dots + 8 \times 6 \\ = 1 + 9 \times 8 \times 3$$

Also

$$1 = 1^3$$

$$1 + 7 = 2^3$$

$$1 + 7 + 19 = 3^3$$

$$1 + 7 + 19 + 37 = 4^3$$

$$\vdots \qquad \vdots$$

$$1 + 7 + 19 + \dots + 217 = 9^3$$

Note that 2^3 is the sum of the first two numbers of the sequence 1, 7, 19, 37, Similarly 3^3 is the sum of first three numbers and so on. In short, these numbers (1, 7, 19, ...) may be obtained by putting $n = 1, 2, 3, \dots$ in $1 + n(n-1) \times 3$.

Thus to find out the cube root of a given number, we go on subtracting the numbers of the sequence 1, 7, 19, 37, ... till we get a zero. The number of subtractions needed for this purpose is the cube root of the given number.

Example 1: Find the cube root of 216 by successive subtraction.

Solution: Subtract the numbers of the sequence 1, 7, 19, 37, 61, ... from 216 till we get zero from the given number.

$$216 - 1 = 215$$

$$215 - 7 = 208$$

$$208 - 19 = 189$$

$$189 - 37 = 152$$

$$152 - 61 = 91$$

$$91 - 91 = 0$$

Since we subtracted 6 times to get zero. Thus $\sqrt[3]{216} = 6$.

Example 2: Is 236 a perfect cube? If not, then what is the smallest number which you must subtract from 236 to make it a perfect cube?

Solution:

$$236 - 1 = 235$$

$$235 - 7 = 228$$

$$228 - 19 = 209$$

$$209 - 37 = 172$$

$$172 - 61 = 111$$

$$111 - 91 = 20$$

The next number to be subtracted is 127 which is greater than 20, therefore the process of subtraction does not end in zero. So 236 is not a perfect cube. If 20 is subtracted from 236, then $(236 - 20)$ is equal to 216 which is a perfect cube of 6.

1. Find the cubes of the following numbers

- (a) $2\frac{1}{5}$ (b) 1.1 (c) 0.04 (d) 7

$$(a) 2\frac{1}{5} = \frac{11}{5}$$

$$\left(\frac{11}{5}\right)^3 = \frac{11}{5} \times \frac{11}{5} \times \frac{11}{5}$$

$$= \frac{1331}{125}$$

$$\text{Ans} = \frac{1331}{125}$$

$$(b) 1.1$$

$$(1.1)^3 = 1.1 \times 1.1 \times 1.1$$

$$= 1.331$$

$$\text{Ans} = 1.331$$

$$(c) 0.04$$

$$(0.04)^3 = 0.04 \times 0.04 \times 0.04$$

$$= 0.000064$$

$$\text{Ans} = 0.000064$$

$$(d) 7$$

$$(7)^3 = 7 \times 7 \times 7$$

$$= 343$$

$$\text{Ans} = 343.$$

2. Which of the following numbers are cubes of even numbers -

- (a) 729 (b) 1,000 (c) 2,744 (d) 6,859

$$(a) 729 = \text{odd}$$

$$(b) 1,000 = \text{even}$$

$$(c) 2,744 = \text{even}$$

$$(d) 6,859 = \text{odd}$$

3 Which of the following are perfect-cubes.

- (a) 1728 (b) 2,190 (c) 18,225 (d) 9,261

$$\begin{array}{r} (a) 2 \mid 1728 \\ 2 \mid 864 \\ 2 \mid 432 \\ 2 \mid 216 \\ 2 \mid 108 \\ 2 \mid 54 \\ 3 \mid 27 \\ 3 \mid 9 \\ 3 \mid 3 \\ \hline \end{array}$$

$$\begin{array}{r} (b) 2 \mid 2190 \\ 3 \mid 1095 \\ 5 \mid 365 \\ 73 \mid 73 \\ \hline 1 \end{array}$$

$$2190 = 2 \times 3 \times 5 \times 73$$

Ans = No it is not a perfect-cube

$$1728 = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times \underline{3 \times 3 \times 3}$$

Ans. Yes, it is a perfect-cube

$$\begin{array}{r} (c) 3 \mid 18225 \\ 3 \mid 6075 \\ 3 \mid 2025 \\ 3 \mid 675 \\ 3 \mid 225 \\ 3 \mid 75 \\ 5 \mid 25 \\ 5 \mid 5 \\ \hline \end{array}$$

$$\begin{array}{r} (d) 3 \mid 9261 \\ 3 \mid 3087 \\ 3 \mid 1029 \\ 7 \mid 343 \\ 7 \mid 49 \\ 7 \mid 7 \\ \hline \end{array}$$

$$9261 = 3 \times 3 \times 3 \times 7 \times 7 \times 7$$

$$18225 = 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \quad \text{Ans} = \text{Yes}$$

4. Find the cube root of the following numbers by successive subtraction of numbers 1, 7, 9

(a) 27

(b) 125

(c) 1000

(d) 1331

(a) 27

1. $27 - 1 = 26$

2. $26 - 7 = 19$

3. $19 - 19 = 0$

(b) 125

1. $125 - 1 = 124$

2. $124 - 7 = 117$

3. $117 - 19 = 98$

4. $98 - 37 = 61$

5. $61 - 61 = 0$

Ans = 3.

Ans = 5.

(c) 1000

1. $1000 - 1 = 999$

2. $999 - 7 = 992$

3. $992 - 19 = 973$

4. $973 - 37 = 936$

5. $936 - 61 = 875$

6. $875 - 91 = 784$

7. $784 - 127 = 657$

8. $657 - 169 = 488$

9. $488 - 217 = 271$

10. $271 - 271 = 0$

(d), 1331

1. $1331 - 1 = 1330$

2. $1330 - 7 = 1323$

3. $1323 - 19 = 1304$

4. $1304 - 37 = 1267$

5. $1267 - 61 = 1206$

6. $1206 - 91 = 1115$

7. $1115 - 127 = 988$

8. $988 - 169 = 819$

9. $819 - 217 = 602$

10. $602 - 271 = 331$

11. $331 - 331 = 0$

Ans = 10 -

Ans = 11